Noether, Partial Noether Operators and First Integrals for the Coupled Lane-emden System

نویسندگان

  • Ben Muatjetjeja
  • Chaudry Masood Khalique
  • C. M. Khalique
چکیده

Systems of Lane-Emden equations arise in the modelling of several physical phenomena, such as pattern formation, population evolution and chemical reactions. In this paper we construct Noether and partial Noether operators corresponding to a Lagrangian and a partial Lagrangian for a coupled Lane-Emden system. Then the first integrals with respect to Noether and partial Noether operators are obtained for the Lane-Emden system under consideration. We show that the first integrals for both the Noether and partial Noether operators are the same. However, the gauge function is different in certain cases. Key WordsLagrangian, Noether and partial Noether operators, First integrals, LaneEmden system, Lie group methods

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Integrals for Two Linearly Coupled Nonlinear Duffing Oscillators

We investigate Noether and partial Noether operators of point type corresponding to a Lagrangian and a partial Lagrangian for a system of two linearly coupled nonlinear Duffing oscillators. Then, the first integrals with respect to Noether and partial Noether operators of point type are obtained explicitly by utilizing Noether and partial Noether theorems for the system under consideration. Mor...

متن کامل

Two-dimensional systems that arise from the Noether classification of Lagrangians on the line

Noether-like operators play an essential role in writing down the first integrals for Euler-Lagrange systems of ordinary differential equations (ODEs). The classification of such operators is carried out with the help of analytic continuation of Lagrangians on the line. We obtain the classification of 5, 6 and 9 Noether-like operators for two-dimensional Lagrangian systems that arise from the s...

متن کامل

INTEGRATION OF SYSTEMS OF ODEs VIA NONLOCAL SYMMETRY-LIKE OPERATORS

We apply nonlocal symmetry-like operators to systems of two first and two second-order ordinary differential equations to seek reduction to quadratures. The reduction of order of such systems is carried out with the help of analytic continuation of scalar equations in the complex plane. Examples are taken from the literature. Precisely it is shown how the reduction to quadratures of a system of...

متن کامل

Noether Symmetry in f(T) Theory at the anisotropic universe

As it is well known, symmetry plays a crucial role in the theoretical physics. On other hand, the Noether symmetry is a useful procedure to select models motivated at a fundamental level, and to discover the exact solution to the given lagrangian. In this work, Noether symmetry in f(T) theory on a spatially homogeneous and anisotropic Bianchi type I universe is considered. We discuss the Lagran...

متن کامل

ver . 2 ON HAMILTONIAN FLOWS ON EULER - TYPE EQUATIONS

Properties of Hamiltonian symmetry flows on hyper-bolic Euler-type Liouvillean equations E ′ EL are analyzed. Description of their Noether symmetries assigned to the integrals for these equations is obtained. The integrals provide Miura transformations from E ′ EL to the multi-component wave equations E. By using these substitutions, we generate an infinite-Hamiltonian commu-tative subalgebra A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010